If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=143183
We move all terms to the left:
x^2-(143183)=0
a = 1; b = 0; c = -143183;
Δ = b2-4ac
Δ = 02-4·1·(-143183)
Δ = 572732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{572732}=\sqrt{4*143183}=\sqrt{4}*\sqrt{143183}=2\sqrt{143183}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{143183}}{2*1}=\frac{0-2\sqrt{143183}}{2} =-\frac{2\sqrt{143183}}{2} =-\sqrt{143183} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{143183}}{2*1}=\frac{0+2\sqrt{143183}}{2} =\frac{2\sqrt{143183}}{2} =\sqrt{143183} $
| 20(1-P)-15(1-2p)+12(1-3p)=0 | | 4x-17=2x+9=3x-4 | | 21=2m+8 | | x.3+12/7=15 | | 4(h-5)=36 | | 21=2m+8,m= | | v+28/5=7 | | 4x+18=7x-12=4 | | 4x-3(-20)=6x-7(11-x)-1 | | x2=94.25 | | x/3=110 | | 6-(6/2)+x=16 | | 6w+1=19 | | 16x+8-12x-6=18x+9 | | 17-2(6x-5)=4(7x-2) | | -22=64-(4x+2 | | 3/x=110 | | 6-3+x=16 | | 4+x=5x-9-(2x-3x | | (7x+2)(5-2x)=0 | | p÷10=9 | | z+13/5=6 | | -3p-13=5(4p+2) | | p⁄10=9 | | -5(8x+2)=-250 | | 1=c-89/8 | | 5(x+2)=x+10 | | 2x^2-3=13+4x | | 10(v+6)=100 | | 8(s-92)=24 | | 4x+6=-2x+8 | | ²x=⅘ |